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SUMMARY 

Creeping viscous flows are followed through finite element meshes by use of pseudo-concentrations which 
define material position. The concentrations, assumed to be transported only by convection, serve as 
material markers. Illustrations are presented related to industrial forming processes and the slow deformation 
of geological structures. 
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INTRODUCTION 

The versatility offered by the finite element method for adjusting nodal point co-ordinates during 
an analysis has made it an ideal tool for following creeping viscous and viscoplastic flows through 
finite deformations. To do so, it is only necessary to determine the instantaneous velocity field 
for a given position and then increment each nodal point co-ordinate to obtain the new position of 
the mesh and material. Although the method has been successfully applied to a wide range of 
problems, it has the disadvantage that the mesh often becomes so distorted that continued analysis 
is no longer possible. When this occurs the analyst must define a new mesh and interpolate new 
nodal point values. 

The procedure presented in this paper assigns a pseudo-concentration throughout the mesh in 
such a manner that its value indicates the presence or absence of the creeping viscous material. 
In regions where the material is present, the appropriate effective viscosity is used during the 
assembly of the stiffness matrix. In those regions of the mesh where the value of the concentration 
indicates that the material has not yet penetrated, an artificially low value of viscosity is used so 
as not to affect the velocity of the higher viscosity material. The velocity field thus determined, 
the pseudo-concentration is allowed to follow the fluid flow through the next increment of time 
by setting its material derivative equal to zero. 

Using concentrations to follow the movement of an interface between two immiscible fluids is 
well established, particularly in the simulation of fluid flows associated with oil reservoirs.6 
However, in these applications the concentrations are real, and they often develop steep fronts 
which cause numerical instabilities. For the method presented in this paper, the concentrations are 
fictitious and can be defined as smooth functions, thus making it possible to follow their movement 
without the difficulties encountered when simulating real concentrations. In the event that a 
pseudo-concentration does develop a steep front during the course of an analysis, a new, smoother 
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concentration field can be assigned, provided that it defines the same location to the material. This 
usually means preserving a critical contour which separates the actual material from the artificial 
material. A procedure for automatically redefining a concentration field while preserving the 
location of a given contour has been developed and is illustrated later in the paper. 

PROCEDURE 

Governing equations 

The governing equations for the slow (creeping) motion of both the real and the artificial fluids 

momentum: 
are; 

aoij 
~ + xi  = 0, ax j  

incompressibility: 

aui 
axi - = 0, 

stress-deformation-rate relationship: 

g . . = 2 p d . . - p 6 . .  
l J  LJ’ 

velocity-deformation-rate relationship: 
(3) 

(4) 

boundary conditions: 

aijnj= TT, on ST, (5 )  

ui=u:, on S,, (6) 
where oij is the stress tensor, p is the pressure, X i  is the body force per unit volume, ui is the velocity, 
p is the viscosity, d i j  is the deformation-rate tensor, ni is the unit outward normal vector to the 
surface S ,  u: is the specified velocity on S ,  and T: is the specified surface traction on S,. 

The governing equation for the pseudo-concentration, M ,  is obtained by setting its material 
derivative equal to zero. Hence 

aM aM 
__ + ui- = 0. 
at axi (7) 

Because the above equation is of first order, boundary values for M should be specified only along 
that part of the boundary where the fluid enters the control volume (7). If M is not specified, the 
material will enter the control volume with a gradient normal to the boundary currently specified. 
For completely enclosed regions, boundary values for M need not to be specified. 

Solutions of the above equations by the finite element method are well documented in the 
literature. Because the algorithm being described involves nothing more than repeated use of these 
solution techniques, details are not presented here. The interested reader is referred to References 7 
and 8. 
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The artificial jluid and free surfaces 

In order to model the flow of a creeping viscous fluid using a pseudo-concentration, it is 
necessary to define the concentration throughout the entire mesh and have it transported by an 
artificial fluid in regions where the real fluid is not present. Implicit in the procedure is the 
assumption that it is possible to specify a viscosity for the artificial material low enough to ensure 
that its presence has no effect on the motion of the real fluid. It is, perhaps, obvious that this would 
be true under certain actual conditions, e.g. the atmosphere adjacent to the earth’s crust as the 
latter slowly creeps over periods of geological time. However, if too low a value is specified for the 
viscosity of the artificial material, the finite element equations become ill-conditioned. Numerical 
tests were run which compared results obtained from two different values for the viscosity of the 
artificial fluid. The viscosities used were two and three orders of magnitude smaller than the 
viscosity of the real fluid. For these tests -there was less than half a per cent difference in the 
calculated nodal point forces and no noticeable differences in the resulting flow patterns. Such tests 
should be made when applying the technique to specific problems. 

The simulated free surface between the artificial fluid and the real fluid is assumed to be free from 
any surface traction. Work is under way to incorporate a procedure which would make it possible 
to assign arbitrary surface tractions on such surfaces. The algorithm will first identify the elements 
through which the surface passes and then calculate the equivalent nodal forces. 

Smoothing 

The need for a smooth function to represent the pseudo-concentration is important to ensure 
stability of the finite element equations. In this context, we refer to a smooth function as one 
which has a non-zero gradient, but with near zero values for all derivatives higher than the first. 
It is usually a simple matter to define an initially smooth concentration. However, as the flow 
progresses, the surface which this function represents can become distorted and develop regions 
having large curvature. Evaluation of the material derivative, therefore, becomes less accurate 
and instabilities usually ensue. When this occurs the analysis has reached a point similar to that 
in the incremental mesh formulation where it is necessary to re-mesh. However this usually 
occurs much further into the analysis than the point where re-meshing would be required, and 
is much easier to fix. 

Because a proper specification for M requires nothing more than the ability to determine on 
which side of a critical contour a point lies, any two M-surfaces which have the same location for 
such a contour will both serve this purpose. Therefore, if an M-surface were to become so distorted 
as to prevent continued analysis, it would only be necessary to replace it with a smoother surface 
having the same location for the critical contour. Because the mesh would not have been altered by 
this procedure, all nodal values for other variables, such as temperature, would be left unaffected. 

Several computer codes were developed and tested for automatically smoothing the M-surface 
while keeping a critical contour in place. The most successful was one which designates the new 
nodal values for M as equal to the critical contour value plus or minus the distance each node is 
from the contour. If the original M-value at a node is greater than the critical contour value, the 
distance is added, if less the distance is subtracted. 

Moving boundaries 

In many practical applications such as forging of metals, the boundaries of the control volume 
will have specified velocities. For these problems it is desirable to use a procedure similar to the 
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arbitrary Eulerian-Lagrangian m e t h ~ d ~ , ' ~  whereby the mesh is given a velocity independent of 
the fluid. This allows specification of a mesh velocity which is consistent with the boundary 
velocities and which maintains uniformity of the mesh in the interior of the control volume. This 
independent velocity, used only to increment the mesh between calculations of the fluid velocity, 
does not enter the Eulerian formulation of the momentum equation. That is, the momentum 
equation is still used to describe the velocity field at  an instant of time within a fixed spatial mesh. 

In order to obtain the governing equation for the pseudo-concentration with respect to the 
moving mesh, let its representation in a fixed Cartesian reference frame be 

M = M(Xi ,  t ) ,  (8) 

U i  = Ui(Xi, t) .  (9) 

and let the velocity of the mesh be given by 

The time rate of change of the concentration with respect to a point moving with the mesh is 
then given by 

D M  dM dM -=ui-+--- .  
D t  axi at 

However, the time rate of change of the concentration with respect to a material point (a point 
moving with the velocity of the fluid, ui )  is zero; hence 

dM aM 
ui- + - = 0. axi at 

If this last expression is subtracted from the first, we obtain 

aM 
~ = (Ui - ui)-, 
D t  axi 

D M  

which is the governing equation for the concentration with respect to points moving with the 
mesh, e.g. the nodes. It is clear from this expression that whenever the mesh velocity coincides 
with the fluid velocity, the rate of change of the concentration is zero, as it is for the 
quasi-Lagrangian formulation. Likewise, whenever the mesh velocity is zero, the time rate of 
change coincides with that used in the Eulerian formulation. 

Fluid interfaces 

Although pseudo-concentrations were developed to track free surfaces of creeping viscous fluids, 
they can also be used to track interfaces between two different materials. Such problems occur 
frequently in the study of the slow deformations of the Earth's crust. For these applications, several 
critical contours can be used to represent the interfaces between strata. For situations where the 
geometry of the interfaces is so complex that it would be difficult to describe with a single function, 
more than one concentration can be used. Such a procedure adds very little to the overall cost of the 
analysis since the same matrix equation is applicable for each concentration. 

ILLUSTRATION 

In the examples presented below, the inertial terms were assumed negligible. The velocity field and 
the pseudo-concentration were approximated with quadratic 6-node triangular elements. Seven- 



USE OF PSEUDO-CONCENTRATIONS 153  

(b) t = O  I I  I i 

(c) r = O . l o  

( e )  t=0.31 

(d) t=0 .19  

( f )  t =  0.60 

(9) t=0.77 (h ) ’ t  =0.97 

Figure 1. Axisymmetric analysis of the flow of fluid during injection moulding: (a) shape of mould; (b)-(h) profiles of 
the fluid as the mould is field 
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point Gaussian quadrature was used for the numerical integration. The pressure approximation, 
hence the degree to which the constraint of incompressibility was satisfied, was taken either as an 
independent linear function in each element, a constant in each element, or as a continuous piece- 
wise linear function throughout the mesh 

Injection moulding 

The problem is to analyse the flow of a fluid as it is injected into a mould to form the shape shown 
in Figure l(a). The fluid enters the mould through the left hand boundary at a constant rate 
and with a parabolic profile. The position of the material at the start of the analysis was assumed 
to be as shown in Figure l(b). The viscosity of the artificial material was taken to be two orders 
of magnitude less than that of the material being simulated. An axisymmetric analysis was 
conducted using the upper half of the mould. The pressure was specified as a continuous, 
piecewise-linear function. 

Because the mould is a closed container, it was necessary to make accommodation for the 
artificial material to either escape or become permanently compressed as the mould is filled. Both 
procedures were used for the analysis, with little difference except near the end of the analysis when 
the trapped voids occupied only small regions within single elements. In the case where the fluid 
was allowed to escape from the mould, the boundaries at the top of the flange and at the end of the 
shaft were left open, with the other boundaries assumed smooth. No-slip boundary conditions 
were prescribed at all nodes in contact with the real material. 

The progression of the fluid as it fills the mould is shown in Figures l(b)-(h). The non-dimensional 
time indicated in these Figures represents the ratio of the simulated time to the actual time 
needed to fill the mould based on its volume and the rate of injection. The material contacted 
the final node at a time equal to 1.1, which indicates a ten per cent error associated with the 
mesh and time step used for this analysis. 

Compression of a cylindrical specimen 

The second example illustrates the use of the method for applications which have moving 
boundaries. The problem, although relatively simple in concept, represents a rather diflicult 
problem to analyse. A cylindrical specimen is compressed between two rough platens of the same 
diameter as the specimen. As the compression progresses, the material flows out and over the edges 
of the platen. 

The problem’s geometry is shown in Figure 2(a), where the vertical axis represents an axis of 
symmetry and the horizontal axis represents a plane of symmetry. The platens were assumed 
to have constant velocities. A mesh velocity was assigned to each node proportional to its 
distance from the horizontal axis. The velocity was in the vertical direction and coincided with 
the platen velocity at the contacting nodes. The pressure was taken as constant within each 
element, and the artificial viscosity was taken to be three orders of magnitude less than that 
specified for the real material. 

Figures 2(c)-(f) show the resulting deformations and the initial and final mesh configurations. 
Figure 2(b) illustrates the final shape of the specimen. For comparison, the same problem was 
analysed using the quasi-Lagrangian procedure. Figure 3 shows the mesh as it deforms with the 
flow. The axial forces were calculated throughout the deformation for both procedures and are 
shown in Figure4, where there magnitudes are given in terms of the initial force at zero 
deformation. The two methods give almost identical results until approximately 30 per cent 
compression. At that point, the mesh for the quasi-Lagrangian case apparently becomes distorted 
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Figure 2. Compression of a cylindrical specimen: (a) geometry of the problem at the start of analysis; (b) final shape of 
the specimen; (c)-(f) deformation of the specimen during forging 
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Figure 3. Deformation of specimen and mesh during a quasi-Lagrangian analysis 

20. 

18. 

16.1 

14.C 

12.c 
w 
0 
Dl 
0 
G 
-1 
U 

x 
U 

10.0 

u 

8.0 

6.0 

4.0 

2.0 

0.0 
0.0 10.0 20.0 30.0 40.0 50.0 60.0 i 

PERCENT COMPRESSION 
0 

Figure 4. Axial force during compression. Quasi-Lagrangian analysis represented by circles, pseudo-concentration 
analysis represented by squares 
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enough to cause significant error, and shortly thereafter the results become meaningless. 
Of some concern is the error associated with the integration of the matrix equations when 

the critical contour passes through an element creating a sharp discontinuity in the viscosity. 
To assess this error for the current problem, a test case was run where the platens were assumed 
to be smooth and much larger in diameter than the specimen, thus allowing the specimen to 
remain in pure compression throughout the deformation. The axial force necessary to maintain 
a constant velocity of the platens is 

F = ~ . O V , U U / H ~ ,  (1 3) 
Where V is half the volume of the specimen, u is the velocity of the platens relative to the plane 
of symmetry and H is half the height of the specimen. 

The problem was analysed by the pseudo-concentration method and the results are compared 
with the above solution in Figure 5. The close alignment between the exact solution (the 
continuous curve) and the finite element solution (represented by the points) demonstrates the 
accuracy associated with the integration of the stiffness matrix as well as the accuracy with which 
the pseudo-concentration followed the flow. 

Convective flow 

For this illustration the slow convective flow of two fluids in a closed cylindrical container is 
analysed (see Figure 6(a)). The two fluids have the same viscosity, but the upper fluid has a 
density twice the density of the lower fluid; hence a convective flow results. Similar flows occur 
in the earth’s crust and mantle and the present example could be likened to the rise of a salt 
dome. The mesh used for the analysis is shown in Figure 6(b). The pressure was taken as an 
independent function within each element, hence enforcing the constraint of incompressibility 
at each point. The initial positions of the two fluids are shown in Figure 7(a), and subsequent 
positions are shown in the remaining Figures 7(b)-(f). The unit of time indicated in the Figures 
is defined as t = p / p g h .  

The analysis was stopped at  the point shown because the fluid was essentially in a state of 
static equilibrium, with only an insignificant volume of flow occurring in the narrow cylindrical 
shaft at the axis of symmetry. 

Owing to the stagnation points at the corners of the mesh, the M-surface became distorted 
as the flow progressed, making it necessary to smooth the surface several times during the 
analysis. Figure 7(g) shows the contours of the M-surface before one such smoothing and 
Figure 7(h) shows contours after smoothing. The location of the interface contour is indicated 
by the arrows and is the same for both surfaces. 

Folding 

The final example is another one applicable to geology and illustrates the possible use of the 
method to study the folding of stratified rocks in the earth’s crust. Figures 8(a) and 8(d) show 
the initial mesh with the critical contours, and positions of the rock strata. The relative viscosities 
of the strata are shown in Figure 8(b). The upper, low-viscosity layer represents the absence of 
material, thus providing a means to study the surface deformation. The initial offset of the strata 
represents a fault which was assumed to exist at  the start of motion. The left hand boundary 
was assumed smooth, simulating a plane of symmetry. The right hand boundary was given a 
constant velocity to the left. The lower boundary was also assumed smooth. Figures 8(d)-(h) 
show the resulting deformation of the strata due to the horizontal compression. Figure 8(c) 
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Figure 5. Pure compression test: (a) force-deformation results compared to exact solution; (b) initial mesh and material 
location; (c) final mesh and material location 



Figure 6. Convective flow of two fluids in a closed container: (a) physical layout showing lighter fluid rising at the 
centre of the container; (b) finite element mesh used for analysis 
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Figure 7. Solution to the convective flow problem: (a)-(f) convective flow patterns showing velocity vectors and the 
interface contour; (8) M-surface contours before smoothing; (h) M-surface contours after smoothing 
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Figure 8. Deformation of rock strata during compression: (a) initial mesh with critical contours; (b) relative viscosities 
of the rock; (c) final mesh with critical contours; (d)-(h) deformation of the strata during compression 

shows the final position of the mesh with the critical contours. For this illustration, the pressure 
was taken to be constant within each element. 

CONCLUDING REMARKS 

The use of a pseudo-concentration to designate the location of a creeping viscous material during 
a transient analysis has been found to be an easy method to follow flows through large 
deformations. An increase in computer time is needed to increment the pseudo-concentration, 
which is compensated for by not having to re-mesh during an analysis. In addition, the method 
allows the design of meshes without the need for matching element boundaries with specified 
free surfaces or interfaces. Although the surface representing the concentration can become 
distorted and prevent continuation of the analysis, it is relatively easy to define a smoother 
surface in such a way that the critical contour remains in place. One such smoothing routine 
has proved successful and was used in the analyses presented in this paper. 
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